Портал для мам - Дом ответов

Центрифугирование. Его использование в разных направлениях биологии. Центрифугирование С помощью метода центрифугирования можно

2.5.1 Природа градиентов

Для создания градиентов плотности растворов чаще всего применяются растворы сахарозы, иногда с фиксированным рН. В некоторых случаях хорошее разделение получается при использовании вместо обычной воды D 2 0. В табл. 2.1 приведены свойства некоторых растворов сахарозы.



Выбор градиента диктуется конкретными задачами фракционирования. Так, например, фикол, выпускаемый фирмой Pharmacia Fine Chemicals, может заменять сахарозу в тех случаях, когда необходимо создать градиенты с большой плотностью и низким осмотическим давлением. Еще одно преимущество фикола состоит в том, что он не проходит через клеточные мембраны. Для создания градиентов большей плотности применяют соли тяжелых металлов, например рубидия и цезия, однако из-за коррозирующего действия CsCl такие градиенты используются только в роторах, изготовленных из стойких металлов, например титана»

2.5.2 Методика создания ступенчатого градиента плотности

Для создания градиента плотности в центрифужную пробирку осторожно вносят при помощи пипетки несколько растворов с последовательно уменьшающейся плотностью. Затем на самый верхний слой, имеющий наименьшую плотность, наслаивают образец в виде узкой зоны, после чего пробирку центрифугируют. Получить плавные линейные градиенты можно за счет сглаживания ступенчатых градиентов при длительном стоянии раствора. Процесс можно ускорить, осторожно перемешивая содержимое пробирки проволокой или слегка покачивая пробирку.

2.5.3 Методика создания плавного градиента плотности

В большинстве случаев для создания плавного градиента плотности пользуются специальным устройством. Оно состоит из двух цилиндрических сосудов строго определенного одинакового диаметра, сообщающихся друг с другом в нижней части с помощью стеклянной трубки с контрольным клапаном, что позволяет регулировать пропорции, в которых смешивается содержимое обоих сосудов. Один из них снабжен мешалкой и имеет выходное отверстие, через которое раствор стекает в центрифужные пробирки. Более плотный раствор помещают в смеситель; второй цилиндр заполняют раствором меньшей плотности. Высота столбика растворов в обоих цилиндрах устанавливается таким образом, чтобы гидростатическое давление в них было одинаковым. Более плотный раствор постепенно выпускается из смесителя в центрифужные пробирки и одновременно замещается равным объемом раствора меньшей плотности, поступающего в смеситель из второго цилиндра через контрольный клапан. Гомогенность раствора в смесителе обеспечивается за счет постоянного перемешивания раствора с помощью мешалки. По мере сливания раствора в центрифужные пробирки плотность его уменьшается и в пробирках создается линейный градиент плотности. Нелинейные градиенты можно создавать при помощи системы, состоящей из двух цилиндров неодинакового диаметра.

Для формирования градиентов плотности различной крутизны пользуются системой из двух механически управляемых шприцов, которые заполняют растворами неодинаковой плотности. Различные градиенты можно создавать, изменяя относительную скорость движения поршней.

2.5.4 Извлечение градиентов из центрифужных пробирок

После завершения центрифугирования и разделения частиц необходимо извлечь образовавшиеся зоны. Это делают несколькими способами, чаще всего методом вытеснения. Центрифужную пробирку прокалывают у основания и в нижнюю ее часть медленно вводят очень плотную среду, например 60-70%-ный раствор сахарозы. Находящийся сверху раствор вытесняется, и фракции отбирают при помощи шприца, пипетки или специального приспособления, соединенного через трубочку с коллектором фракций. Если пробирки изготовлены из целлулоида или нитроцеллюлозы, фракции извлекают, надрезав пробирку специальным лезвием. Для этого центрифужную пробирку, закрепленную в штативе, надрезают непосредственно под нужной зоной и отсасывают фракцию шприцом или пипеткой. При подходящей конструкции режущего устройства потеря раствора будет минимальной. Сбор фракций осуществляют также, проколов основание пробирки тонкой полой иглой. Капли, вытекающие из пробирки через иглу, собирают в коллектор фракций для дальнейшего анализа.

2.5.5 Препаративные центрифуги и их применение

Препаративные центрифуги можно подразделить на три основные группы: центрифуги общего назначения, скоростные центрифуги и препаративные ультрацентрифуги. Центрифуги общего назначения дают максимальную скорость 6000 об мин -1 и ОЦУ до 6000 g . Они отличаются друг от друга только емкостью и имеют ряд сменных роторов: угловых и с подвесными стаканами. Одной из особенностей этого вида центрифуг является их большая емкость - от 4 до 6 дм 3 , что позволяет загружать их не только центрифужными пробирками на 10,50 и 100 см 3 , но и сосудами емкостью до 1,25 дм 3 . Во всех центрифугах этого типа роторы жестко крепятся на валу привода, и центрифужные пробирки вместе с их содержимым должны быть тщательно уравновешены и различаться по весу не более чем на 0,25 г. Нельзя загружать в ротор нечетное число пробирок, а при неполной загрузке ротора пробирки следует размещать симметрично, одна против другой, обеспечивая таким образом равномерное распределение пробирок относительно оси вращения ротора.

Скоростные центрифуги дают предельную скорость 25 000 об-мин -1 и ОЦУ до 89000g. Камера ротора снабжена системой охлаждения, предотвращающей нагревание, которое возникает вследствие трения при вращении ротора. Как правило, скоростные центрифуги имеют емкость 1,5 дм 3 и снабжены сменными роторами, как угловыми, так и с подвесными стаканами.

Препаративные ультрацентрифуги дают предельную скорость до 75000 об-мин -1 и максимальное центробежное ускорение 510 000 g . Они снабжены как холодильником, так и вакуумной установкой, чтобы предотвратить перегрев ротора вследствие трения его о воздух. Роторы таких центрифуг изготавливают из высокопрочных алюминиевых или титановых сплавов. В основном применяют роторы из алюминиевых сплавов, однако в тех случаях, когда необходимы особенно высокие скорости, пользуются роторами из титана. Для уменьшения вибрации, возникающей в результате нарушения равновесия ротора из-за неравномерного наполнения центрифужных пробирок, ультрацентрифуги имеют гибкий вал. Центрифужные пробирки и их содержимое должны быть тщательно уравновешены с точностью до 0,1 г. Аналогичные требования следует соблюдать и при загрузке роторов центрифуг общего назначения.

2.6 Конструкция роторов

2.6.1 Угловые роторы и роторы с подвесными стаканами

Роторы препаративных центрифуг обычно бывают двух типов - угловые и с подвесными стаканами. Угловыми они называются потому, что помещаемые в них центрифужные пробирки все время находятся под определенным углом к оси вращения. В роторах с подвесными стаканами пробирки устанавливаются вертикально, а при вращении под действием возникающей центробежной силы переходят в горизонтальное положение; угол наклона к оси вращения составляет 90°.

В угловых роторах расстояние, проходимое частицами до соответствующей стенки пробирки, весьма невелико, и поэтому седиментация происходит сравнительно быстро. После столкновения со стенками пробирки частицы соскальзывают вниз и образуют на дне осадок. При центрифугировании возникают конвекционные потоки, которые в значительной степени затрудняют разделение частиц с близкими седиментационными свойствами. Тем не менее роторы подобной конструкции с успехом применяются для разделения частиц, скорости седиментации которых различаются довольно сильно.

В роторах с подвесными стаканами также наблюдаются конвекционные явления, однако выражены они не так сильно. Конвекция является результатом того, что под действием центробежного ускорения частицы оседают в направлении, не строго перпендикулярном оси вращения, и поэтому, как и в угловых роторах, ударяются о стенки пробирки и соскальзывают на дно.

Конвекционных явлений и эффектов завихрения удается до некоторой степени избежать, используя пробирки секториальной формы в роторах с подвесными стаканами и регулируя скорость вращения ротора; перечисленных выше, недостатков лишен также метод центрифугирования в градиенте плотности.

2.6.2 Роторы непрерывного действия

Роторы непрерывного действия предназначены для скоростного фракционирования относительно небольших количеств твердого материала из суспензий больших объемов, например для выделения клеток из питательных сред. В ходе центрифугирования суспензия частиц добавляется в ротор непрерывно; пропускная способность ротора зависит от природы осаждаемого препарата и варьируете пределах от 100 см 3 до 1 дм 3 в 1 мин. Особенность ротора состоит в том, что он представляет собой изолированную камеру специальной конструкции; содержимое ее не сообщается с внешней средой, а поэтому не загрязняется и не распыляется.

2.6.3 Зональные роторы, или роторы Андерсона

Зональные роторы делают из алюминиевых или титановых сплавов, которые способны выдерживать весьма значительные центробежные ускорения. Обычно в них имеется цилиндрическая полость, закрывающаяся съемной крышкой. Внутри полости, на оси вращения расположена осевая трубка, на которую надевается насадка с лопастями, разделяющими полость ротора на четыре сектора. Лопасти или перегородки имеют радиальные каналы, по которым из осевой трубки к периферии ротора нагнетается градиент. Благодаря такой конструкции лопастей конвекция сведена до минимума.

Заполнение ротора производится при его вращении со скоростью около 3000 об/мин -1 . В ротор нагнетают заранее созданный градиент, начиная со слоя наименьшей плотности, который равномерно распределяется по периферии ротора и удерживается у внешней его стенки перпендикулярно оси вращения благодаря центробежной силе. При последующем добавлении слоев градиента большей плотности происходит непрерывное смещение к центру менее плотных слоев. После того как в ротор будет нагнетен весь градиент, его заполняют до полного объема раствором, называемым «подушкой», плотность которого совпадает или несколько превышает наибольшую плотность преформированного градиента.

Затем через осевую трубку, наслаивают исследуемый образец, который вытесняют из трубки в объем ротора с помощью раствора меньшей плотности, при этом с периферии удаляется такой же объем «подушки». После всех этих процедур скорость вращения ротора доводят до рабочей и в течение необходимого промежутка времени проводят либо зонально-скоростное, либо зонально-изопикническое фракционирование. Извлечение фракций проводят при скорости вращения ротора 3000 об - мин -1 . Содержимое ротора вытесняют путем добавления с периферии «подушки», в первую очередь вытесняются менее плотные слои. Благодаря особой конструкции осевого канала ротора Андерсона смешивания зон при их вытеснении не происходит. Выходящий градиент пропускают через регистрирующее устройство, например ячейку спектрофотометра, с помощью которого по поглощению при 280 нм можно определить содержание белка, или через специальный детектор радиоактивности, после чего собирают фракции.

Емкость зональных роторов, используемых при средних скоростях, варьирует от 650 до 1600 см 3 , что позволяет получать довольно большое количество материала. Зональные роторы применяются для удаления белковых примесей из различных препаратов и для выделения и очистки митохондрий, лизосом, полисом и белков.

2.6.4 Анализ субклеточных фракций

Свойства полученного при фракционировании препарата субклеточных частиц можно отнести к свойствам самих частиц только в том случае, если препарат не содержит примесей. Следовательно, всегда необходимо оценивать чистоту получаемых препаратов. Эффективность гомогенизации и наличие в препарате примесей можно определить с помощью микроскопического исследования. Однако отсутствие видимых примесей еще не является достоверным доказательством чистоты препарата. Для количественной оценки чистоты полученный препарат подвергают химическому анализу, который позволяет установить содержание в нем белков или ДНК, определить его ферментативную активность, если возможно, и иммунологические свойства.

Анализ распределения ферментов во фракционируемых тканях основан на двух общих принципах. Первый из них заключается в том, что все частицы данной субклеточной популяции содержат одинаковый набор ферментов. Второй предполагает, что каждый фермент локализован в каком-то определенном месте внутри клетки. Если бы это положение было верно, то ферменты могли бы выступать в роли маркеров для соответствующих органелл: например, цито-хромоксидаза и моноаминооксидаза служили бы ферментами-маркерами митохондрий, кислые гидролазы - маркерами лизосом, каталаза - маркером пероксисом, а глюкозо-6-фосфатаза - маркером мембран микросом. Оказалось, однако, что некоторые ферменты, например малатдегидрогеназа, Р -глюкуронидаза, НАДФ" Н-цитохром-с-редуктаза, локализованы более чем в одной фракции. Поэтому к выбору ферментов-маркеров субклеточных фракций в каждом конкретном случае следует подходить с большой осторожностью. Более того, отсутствие фермента-маркера еще не означает отсутствия соответствующих органелл. Вполне вероятно, что при фракционировании происходит потеря фермента органеллами или он ингибируется или инактивируется; поэтому для каждой фракции обычно определяют не менее двух ферментов-маркеров.

Фракция

Объем, см"

Общее разведение

Экснюк-ция, 660 нм

Единицы активности фермента

Выход активности во фракции, %

2.7 Фракционирование методом дифференциального центрифугирования

2.7.1 Оформление результатов

Результаты, полученные при фракционировании тканей, удобнее всего оформлять в виде графиков. Так, при исследовании распределения ферментов в тканях данные лучше всего представлять в виде гистограмм, дающих возможность визуально оценить результаты проведенных экспериментов.

Ферментативную активности содержание белка в пробе определяют как в исходном гомогенате, так и в каждой выделенной субклеточной фракции в отдельности. Суммарная ферментативная активность и содержание белка во фракциях не должны сильно отличаться от соответствующих значений в исходном гомогенате.

Затем проводят расчет ферментативной активности и содержания белка в каждой фракции в % от общего выхода, на основании чего составляют гистограмму. По оси абсцисс последовательно откладывают относительное количество_ белка в каждой фракции в порядке их выделения, а по оси ординат - относительную удельную активность каждой фракции. Таким образом, по площади столбиков определяют ферментативную активность каждой фракции.

2.7.2 Аналитическое ультрацентрифугирование

В отличие от препаративного центрифугирования, целью которого является разделение веществ и их очистка, аналитическое ультрацентрифугирование применяется в основном для изучения седиментационных свойств биологических макромолекул и других структур. Поэтому в аналитическом центрифугировании применяют роторы и регистрирующие системы особой конструкции: они позволяют непрерывно наблюдать за седиментацией материала в центробежном поле.

Аналитические ультрацентрифуги могут развивать скорость до 70 000 об-мин -1 , создавая при этом центробежное ускорение до 500 000 g . Ротор у них, как правило, имеет форму эллипсоида и соединен посредством струны с мотором, что позволяет варьировать скорость вращения ротора. Вращается ротор в вакуумной камере, снабженной холодильным устройством, и имеет две ячейки, аналитическую и балансировочную, которые устанавливаются в центрифуге строго вертикально, параллельно оси вращения. Балансировочная ячейка служит для уравновешивания аналитической и представляет собой металлический блок с прецизионной системой. В ней имеются также два индексных отверстия, находящиеся на строго определенном расстоянии от оси вращения, с помощью которых определяют соответствующие расстояния в аналитической ячейке. Аналитическая ячейка, емкость которой, как правило, равна 1 см 3 , имеет секториальную форму. При правильной установке в роторе она, несмотря на то что стоит вертикально, работает по тому же принципу, что и ротор с подвесными стаканами, создавая почти идеальные условия седиментации. На торцах аналитической ячейки имеются окошки с кварцевыми стеклами. Аналитические ультрацентрифуги снабжены оптическими системами, позволяющими наблюдать за седиментацией частиц в течение всего периода центрифугирования. Через заданные промежутки времени седиментирующий материал можно фотографировать. При фракционировании белков и ДНК за седиментацией наблюдают по поглощению в ультрафиолете, а в тех случаях, когда исследуемые растворы имеют разные коэффициенты преломления - с помощью шлирен-системы или интерференционной системы Рэлея. Два последних метода основаны на том, что при прохождении света через прозрачный раствор, состоящий из зон с различной плотностью, на границе зон происходит преломление света. При седиментации между зонами с тяжелыми и легкими частицами образуется граница, которая действует как преломляющая линза; при этом на фотопластинке, использующейся в качестве детектора, появляется пик. В ходе седиментации происходит перемещение границы, а следовательно, и пика, по скорости передвижения которого можно судить о скорости седиментации материала. Интерферометрические системы отличаются большей чувствительностью, чем шлирен-системы. Аналитические ячейки бывают односекторные, которые применяются наиболее часто, и двухсекторные, которые используются для сравнительного изучения растворителя и растворенного вещества.

В биологии аналитическое ультрацентрифугирование применяется для определения молекулярных весов макромолекул, проверки чистоты получаемых образцов, а также для исследования конформационных изменений в макромолекулах.

2.8 Применение аналитического ультрацентрифугирования

2.8.1 Определение молекулярных весов

Существует три основных метода определения молекулярных весов при помощи аналитического ультрацентрифугирования: определение скорости седиментации, метод седиментациоиного равновесия и метод приближения к седиментационному равновесию.

Определение молекулярного веса по скорости седиментации - это наиболее распространенный метод. Центрифугирование проводят при больших скоростях, так что частицы, вначале равномерно распределенные по всему объему, начинают упорядочение перемещаться по радиусу от центра вращения. Между областью растворителя, уже свободной от частиц, и той его частью, которая их содержит, образуется четкая граница раздела. Эта граница при центрифугировании перемещается, что дает возможность определять скорость седиментации частиц при помощи одного из вышеупомянутых методов, регистрируя это перемещение на фотопластинке.

Скорость седиментации определяется следующим соотношением:

где х - расстояние от оси вращения в см,

t - время в с,

w - угловая скорость в рад-с -1 ,

s - коэффициент седиментации "молекулы.

Коэффициент седиментации - это скорость, отнесенная к единице ускорения, его измеряют в единицах Сеедберга ; 1 единица Сведберга равна 10 _13 с. Численное значение s зависит от молекулярного веса и формы частиц и является величиной, характерной для данной молекулы или надмолекулярной структуры. Например, коэффициент седиментации лизоцима равен 2,15 S; катал аза имеет коэффициент седиментации 11.35S, субъединицы рибосом бактерий - от 30 до 50S, а субъединицы рибосом эукариотов - от 40 до 60S.

где М - молекулярный вес молекулы, R - газовая постоянная, Т - абсолютная температура, s - коэффициент седиментации молекулы, D - коэффициент диффузии молекулы, v - парциальный удельный объем, который можно рассматривать как объем, занимаемый одним граммом растворенного вещества, р - плотность растворителя.

Метод седиментациоиного равновесия. Определение молекулярных весов этим методом проводится при сравнительно небольших скоростях вращения ротора, порядка 7 000-8 000 об-мин -1 , чтобы молекулы с большим молекулярным весом не осаждались на дно. Ультрацентрифугирование проводят вплоть до достижения частицами равновесия, устанавливающегося под действием центробежных сил, с одной стороны, и диффузионных - с другой, т. е. до тех пор, пока частицы не перестанут перемещаться. Затем по образовавшемуся градиенту концентрации рассчитывают молекулярный вес вещества "согласно формуле

где R - газовая постоянная, Т - абсолютная температура, ю - угловая скорость, р - плотность растворителя, v - парциальный удельный объем, с х и с 2 - концентрация растворенного вещества на расстояниях г г и г 2 от оси вращения.

Недостатком данного метода является то, что для достижения седиментациоиного равновесия необходимо длительное время - от нескольких дней до нескольких недель при непрерывной работе центрифуги.

Метод приближения к седиментационному равновесию былразработан для того, чтобы избавиться от недостатков предыдущего метода, связанных с большими затратами времени, необходимого для "установления равновесия. С помощью этого метода можно определять молекулярные веса, когда центрифугируемый раствор находится в состоянии приближения к равновесию. Вначале макромолекулы распределяются по всему объему аналитической ячейки равномерно; затем по мере центрифугирования молекулы оседают, и плотность раствора в области мениска постепенно уменьшается. Изменение плотности тщательно регистрируют, а затем путем сложных расчетов, включающих большое число переменных, определяют молекулярный вес данного соединения по формулам:

где R - газовая постоянная, Т - абсолютная температура, v - парциальный удельный объем, р - плотность растворителя, dcldr - градиент концентрации макромолекулы, г м и г д - расстояние до мениска и дна пробирки соответственно, с м и с д - концентрация макромолекул у мениска и у дна пробирки соответственно, М м и M R -величины молекулярных весов, определенные по распределению концентрации вещества у мениска и дна пробирки соответственно.

2.8.2 Оценка чистоты препаратов

Аналитическое ультрацентрифугирование широко применяется для оценки чистоты препаратов ДНК, вирусов и белков. Чистота препаратов несомненно очень важна в тех случаях, когда требуется точно определить молекулярный вес молекулы. В большинстве случаев о гомогенности препарата можно судить по характеру границы седиментации, используя метод определения скорости седиментации: гомогенный препарат обычно дает одну резкоочерченную границу. Присутствующие в препарате примеси проявляются в виде дополнительного пика или плеча; они же обусловливают асимметрию основного пика.

2.8.3 Исследование конформационных изменений в макромолекулах

Еще одна область применения аналитического ультрацентрифугирования - исследование конформационных изменений макромолекул. Молекула ДНК, например, может быть одно- или двухцепочечной, линейной или кольцевой. Под действием различных соединений или при повышенных температурах ДНК претерпевает ряд обратимых и необратимых конформационных изменений, которые можно установить по изменению скорости седиментации образца. Чем компактнее молекула, тем меньше ее коэффициент трения в растворе и наоборот: чем менее она компактна, тем больше коэффициент трения и, следовательно, тем медленнее будет она седиментировать. Таким образом, различия в скорости седиментации образца до и после различных воздействий на него позволяют обнаруживать конформационные изменения, происходящие в макромолекулах.

У аллостерических белков, таких, например, как аспартат-транскарбамоилаза, конформационные изменения возникают в результате связывания их с субстратом и малыми лигандами. Диссоциацию белка на субъединицы можно вызывать, обработав его такими веществами, как мочевина или парахлормеркурибензоат. Все эти изменения легко можно проследить при помощи аналитического ультрацентрифугирования.

Формования трубчатых изделий методом центрифугирования . Под центрифугированием в промышленность строительных материалов... которых осуществляется такое воздействие, называются центрифугированием . В промышленности РБ используются горизонтальные центрифуги...

  • Осаждение частиц

    Лабораторная работа >> Химия

    Клеток, уже освобожденного низкоскоростным центрифугированием от ядра, митохондрий и... ультрацентрифугирование Особенности этого типа центрифугирования отражены в самом его... для нас примера использования центрифугирования в градиенте плотности сахарозы, ...

  • Использование центрифуги

    Курсовая работа >> Промышленность, производство

    В центрифугах периодического действия различные операции центрифугирования – загрузка, разделение, выгрузка – происходят... различают препаративное и аналитическое центрифугирование . При препаративном центрифугировании исходный биологический материал берут...

  • Препаративное центрифугирование – один из методов выделения биологического материала для последующего проведения биохимических исследований. Позволяет выделить значительное количество клеточных частиц для комплексного изучения их биологической активности, структуры и морфологии. Также метод применим для выделения основных биологических макромолекул. Сфера использования: медицинские, химические и биохимические исследования.

    Классификация методов препаративного центрифугирования

    Препаративное центрифугирование осуществляется по одной из следующих методик:

    • Дифференциальное. Метод основан на разнице в скорости седиментации частиц. Исследуемый материал центрифугируется при постепенном увеличении центробежного ускорения. На каждом из этапов на дно пробирки осаждается одна из фракций среды. После центрифугирования полученная фракция отделяется от жидкости и несколько раз промывается.
    • Зонально-скоростное. Метод основан на наслаивании исследуемой среды на буферный раствор с известным непрерывным градиентом плотности. После этого образец центрифугируется до распределения частиц вдоль градиента, образуя дискретные полосы (зоны). Градиент плотности позволяет исключить смешивание зон и получить относительно чистую фракцию.
    • Изопикническое. Может проводиться в градиенте плотности либо обычным путем. В первом случае обрабатываемый материал наслаивается на поверхность буферного раствора с непрерывным градиентом плотности и центрифугируется до разделения частиц по зонам. Во втором случае исследуемая среда центрифугируется до образования осадка из частиц с большим молекулярным весом, после чего из полученного остатка выделяются исследуемые частицы.
    • Равновесное. Проводится в градиенте плотности из солей тяжелых металлов. Центрифугирование позволяет установить равновесное распределение концентрации растворенного исследуемого вещества. Затем под воздействием сил центробежного ускорения частицы среды собираются в отдельной зоне пробирки.

    Оптимальная методика подбирается с учетом поставленных целей и особенностей исследуемой среды.

    Классификация препаративных лабораторных центрифуг

    В зависимости от особенностей конструкции и эксплуатационных характеристик препаративные центрифуги можно разделить на 3 основные группы:


    • Общего назначения. Максимальная скорость – 8.000 об/мин при относительном центробежном ускорении до 6.000 g. Универсальные лабораторные центрифуги комплектуются угловыми роторами либо роторами с подвесными контейнерами для размещения биологического материала. Отличаются большой емкостью от 4 дм 3 до 6 дм 3 , что позволяет использовать стандартные центрифужные пробирки объемом 10-100 дм 3 и сосуды емкостью не более 1.25 дм 3 . Из-за особенностей крепления ротора к валу привода пробирки либо сосуды должны быть уравновешены и отличаться по весу максимум на 0.25 г. Недопустима эксплуатация центрифуги с нечетным количеством пробирок. При частичной загрузке ротора емкости с исследуемой средой следует размещать симметрично относительно друг друга, тем самым обеспечивая их равномерное распределение по отношению к оси вращения ротора.
    • Скоростные. Максимальная скорость – 25.000 об/мин при относительном центробежном ускорении до 89.000 g. Для предотвращения нагревания из-за возникающих при вращении ротора сил трения рабочая камера оснащается системой охлаждения. Комплектуются угловыми роторами либо роторами с подвесными контейнерами для размещения биологического материала. Емкость скоростных препаративных
      центрифуг – 1.5 дм 3 .
    • Ультрацентрифуги. Максимальная скорость – 75.000 об/мин при относительном центробежном ускорении до 510.000g. Для предотвращения нагревания из-за возникающих при вращении ротора сил трения оснащаются системой охлаждения и вакуумной установкой. Роторы ультрацентрифуг изготавливается из сверхпрочных титановых либо алюминиевых сплавов. Для уменьшения вибраций из-за неравномерного заполнения ротора имеют гибкий вал.

    К отдельной категории следует отнести препаративные центрифуги специального исполнения, предназначенные для проведения определенных разновидностей исследований и решения специфических задач. В эту группу входят центрифуги с нагревательной рубашкой, рефрижераторные центрифуги и другое подобное оборудование.

    Особенности конструкции ротора в препаративных центрифугах

    Препаративные центрифуги комплектуются угловыми либо горизонтальными роторами:


    • Угловые роторы – пробирки во время работы центрифуги расположены под углом 20-35° к оси вращения. Проходимое частицами расстояние до соответствующей стенки пробирки невелико, в связи с этим их осаждение происходит достаточно быстро. Из-за возникающих при центрифугировании конвекционных потоков угловые роторы редко используются для разделения частиц, размеры и свойства которых обуславливают значительные различия скорости осаждения.
    • Горизонтальные роторы – пробирки в роторах этого типа устанавливаются вертикально. В процессе вращения под действием центробежной силы сосуды с обрабатываемым материалом переходят в горизонтальное положение. Данные особенности конструкции и эксплуатации позволяют снизить конвекционные явления, поэтому роторы этого типа оптимальны для разделения частиц с разной скоростью седиментации. Использование пробирок секториальной формы позволяет добиться дополнительного снижения эффектов завихрения и конвекционных явлений.

    Тип ротора определяет сферу использования оборудования. Возможность смены ротора позволяет использовать одну и ту же модель центрифуги для решения разноплановых задач. Медицинские центрифуги для лаборатории Centurion выпускаются в напольных либо настольных вариантах исполнения, что делает возможным использование оборудования в любых помещениях вне зависимости от доступной площади.

    Центрифугирование Это разделение механических смесей на составные части
    действием центробежной силы. Приборы, применяемые для этой
    цели, называют центрифугами.
    Основной частью центрифуги является ротор с монтированными в
    нем гнездами для центрифужных пробирок. Ротор вращается с
    большой скоростью, вследствие чего создаются значительные по
    величине центробежные силы, под действием которых
    происходит разделение механических смесей, например
    осаждение взвешенных в жидкости частиц.

    Процессы, происходящие в центрифуге

    В центрифугах разделяют следующие процессы:
    1)Центробежное фильтрование.
    2)Центробежное отстаивание.
    3)Центробежное осветление.

    Центробежное фильтрование

    Центробежное фильтрование представляет собой
    процесс разделения суспензий в центрифугах с
    дырчатыми барабанами. Внутренняя поверхность
    такого барабана покрыта фильтровальной тканью.
    Суспензия центробежной силой отбрасывается к
    стенкам барабана, при этом твёрдая фаза остаётся на
    поверхности ткани, а жидкость под действием
    центробежной силы проходит сквозь слой осадка и
    ткань удаляется наружу через отверстия в барабане.
    Центробежное фильтрование обычно складывается из
    трёх последовательных физических процессов:
    1)фильтрование с образованием осадка;
    2)уплотнение осадка;
    3)удаление из осадка жидкости, удерживаемой
    молекулярными силами;

    Центробежное отстаивание

    Центробежное отстаивание
    Центробежное отстаивание - процесс разделения
    суспензий в центрифугах, имеющих барабаны со
    сплошными стенками. Суспензия вводится в нижнюю
    часть барабана и под действием центробежной силы
    отбрасывается к стенкам. У стенок образуется слой
    осадка, а жидкость образует внутренний слой и
    вытесняется из барабана поступающей на разделение
    суспензией. Жидкость при этом поднимается кверху,
    переливается через закраину барабана и удаляется
    наружу.
    При этом происходит два физических процесса:
    1)Осаждение твёрдой фазы.
    2)Уплотнение осадка.

    Центробежное осветление

    Центробежное осветление - процесс разделения
    тонких суспензий и коллоидных растворов. Так
    же проводится в сплошных барабанах.
    По физической сущности центробежное
    осветление представляет собой процесс
    свободного осаждения твёрдых частиц в поле
    центробежных сил.
    В барабанах со сплошными стенками
    производится так же разделение эмульсий. Под
    действием центробежной силы компоненты
    эмульсии в соответствии с плотностью
    располагаются в виде разграниченных слоев:
    наружного слоя жидкости с большей плотностью
    и внутреннего слоя более лёгкой жидкости.
    Жидкости выводятся из барабана порознь.

    В клинических и санитарногигиенических лабораториях
    центрифугирование используют
    для отделения эритроцитов от
    плазмы крови, сгустков крови от
    сыворотки, плотных частиц от
    жидкой части мочи и т. д. Для
    этой цели применяют или
    ручные центрифуги, или
    центрифуги с электроприводом,
    скорость вращения которых
    можно регулировать.
    Ультрацентрифуги, скорость
    вращения роторов которых
    превышает 40 000 об/мин,
    применяют обычно в
    экспериментальной практике
    для разделения органелл
    клеток, отделения коллоидных
    частиц, макромолекул,
    полимеров.

    Использование центрифугирования в паразитологии

    Метод используется для дифференцировки сложной
    кровяной смеси, мочи или кала, с последующим
    выделением из нее гельминтов для дальнейшего
    изучения под микроскопом и фиксации материала. В
    процессе центрифугирования имеющиеся в пробе
    паразиты проходят через фильтр и скапливаются в
    нижнем коническом отсеке пробирки. Сетка фильтра
    со специально подобранными по размеру ячейками
    в пробирке расположена вертикально, в результате
    чего происходит горизонтальная (латеральная)
    фильтрация пробы. В результате чего, грубые
    частицы непереваренной пищи, клетчатка оседают в
    смесительной камере, а паразиты и их яйца
    беспрепятственно проходят через фильтр. Таким
    образом, паразиты концентрируются в
    поверхностном слое мелкодисперсного осадка, и
    врачу-лаборанту остается только аккуратно отобрать
    образец для микроскопирования с помощью
    автоматической пипетки и нанести его на
    предметное стекло.

    Метод центрифугирования в цитологии

    Метод дифференциального
    центрифугирования используется для
    фракционирования клеток, т. е. расслоения их
    содержимого на фракции в зависимости от удельного
    веса различных органоидов и клеточных включений.
    Для этого тонко измельченные клетки вращают в
    специальном аппарате – ультрацентрифуге. В
    результате центрифугирования компоненты клеток
    выпадают в осадок из раствора, располагаясь в
    соответствии со своей плотностью. Более плотные
    структуры осаждаются при более низких скоростях
    центрифугирования, а менее плотные – при высоких
    скоростях. Полученные слои разделяют и изучают
    отдельно.

    10. Центрифугирование в ботанике и физиологии растений

    Центрифугирование позволяет получить различные
    фракции субклеточных частиц и исследовать
    свойства и функции каждой фракции в
    отдельности. Например, из листьев шпината можно
    выделить хлоропласты, отмыть их с помощью
    повторного центрифугирования в соответствующей
    среде от клеточных фрагментов и исследовать их
    поведение в различных экспериментальных
    условиях или же определить их химический состав.
    Далее можно, применяя различные модификации
    методики, разрушить эти пластиды и выделить
    посредством
    дифференциального центрифугирования (повторно
    го осаждения частиц при различных величинах
    ускорения) составляющие их элементы. Таким
    путем удалось показать, что пластиды содержат
    структуры, отличающиеся очень упорядоченным
    строением, - так называемые граны; все граны
    находятся внутри ограничивающей хлоропласт
    мембраны (оболочка хлоропласта). Достоинства
    этого метода просто неоценимы, поскольку он
    позволяет выявить существование
    функциональных субъединиц, входящих в состав
    более крупных субклеточных частиц; в частности,
    используя метод

    11. Метод центрифугирования в вирусологии

    Метод центрифугирования в градиенте плотности Брак-ке можно
    использовать как для выделения, так и для получения
    количественных характеристик вирусов растений. Как оказалось,
    этот метод таит в себе многие возможности и в настоящее время
    широко используется в области вирусологии и молекулярной
    биологии. При проведении исследований методом
    центрифугирования в градиенте плотности центрифужную пробирку
    частично наполняют раствором, плотность которого уменьшается в
    направлении от дна к мениску. Для создания градиента при
    фракционировании вирусов растений наиболее часто используют
    сахарозу. Перед началом центрифугирования частицы вируса могут
    быть либо распределены во всем объеме раствора, либо нанесены на
    вершину градиента. Бракке предложил три различных приема
    центрифугирования в градиенте плотности. При изопикпическом
    (равновесном) центрифугировании процесс продолжается до тех пор,
    пока все частицы в градиенте не достигнут уровня, где плотность
    среды равна их собственной плотности. Таким образом,
    фракционирование частиц происходит в этом случае в соответствии с
    различиями в их плотности. Растворы сахарозы не обладают
    достаточной плотностью для изопикнического разделения многих
    вирусов. При скоростном зональном центрифугировании вирус
    сначала наносят па предварительно созданный градиент. Частицы
    каждого типа седиментируют при, этом через градиент в виде зоны,
    или полосы, со скоростью, зависящей от их размера, формы и
    плотности. Центрифугирование при этом заканчивают, когда частицы
    еще продолжают седиментировать. Равновесное зональное
    центрифугирование сходно со скоростным зональным
    центрифугированием, по в этом случае центрифугирование

    12. Трудности в использовании метода центрифугирования

    Применение метода дифференциального центрифугирования
    сопряжено со многими методическими трудностями. Во первых, при
    выделении частиц можно повредить их структуру. Поэтому
    потребовалось разработать специальные методы разрушения клеток,
    которые бы не вызывали повреждения структуры субклеточных
    фракций. Во вторых, поскольку субклеточные частицы обладают
    мембранами, в процессе их выделения могут возникать
    разнообразные осмотические эффекты. Следовательно, для того
    чтобы ультраструктура исследуемых объектов не была разрушена
    еще при их выделении, необходимо тщательно подбирать состав
    среды, в которой производится разрушение клеток и осаждение
    частиц. И наконец, отмывание субклеточных частиц
    (ресуспендирование их в среде и последующее повторное
    центрифугирование) может приводить к потере некоторых
    содержащихся в них веществ, которые под действием сил диффузии
    переходят в раствор.
    В связи с этим иногда бывает трудно понять, какие из малых молекул
    действительно являются элементами исследуемых структур, а какие
    просто были адсорбированы их поверхностью в процессе выделения.
    Такое положение затрудняет точное определение некоторых
    функциональных свойств выделенных объектов.

    Лекция №5

    Разделение жидких неоднородных смесей эффективно проводится методом центрифугирования, основанным на использовании центробежной силы. Аппараты, в которых жидкие неоднородные смеси разделяются под действием центробежной силы, называются центрифугами.

    Метод центрифугирования широко используют в различных областях техники; число типов и конструкций центрифуг весьма велико.

    Основной частью центрифуги является барабан (ротор со сплошными или перфорированными стенками), вращающийся с большой скоростью на вертикальном или горизонтальном валу. Разделение неоднородных смесей в центрифугах может производиться либо по принципу отстаивания, либо по принципу фильтрации. В первом случае используют барабаны со сплошными стенками, во втором - с отверстиями; барабаны с отверстиями покрываются фильтром. Если стенки барабана сплошные, то материал под действием центробежной силы располагается слоями соответственно удельному весу, причем непосредственно у стенок барабана располагается слой материала с большим удельным весом. Если стенки барабана имеют отверстия и снабжены на внутренней поверхности фильтрующей перегородкой, например фильтровальной тканью, то твердые частицы смеси остаются на фильтрующей перегородке, а жидкая фаза проходит через поры твердого осадка и фильтрующей перегородки и удаляется из барабана. Жидкая фаза, отделяемая на центрифуге, называется фугатом .

    Центробежная сила; фактор разделения. При вращении барабана центрифуги и находящейся в нем жидкости возникает центробежная сила как сила инерции.

    С=m W 2 / r (1)

    m -вес вращающегося тела (жидкости) в кгс;

    r -радиус вращения в м

    W -окружная скорость вращения в м/с;

    Окружная скорость вращения определяется как:

    W=ω r = 2 π n r/60 (2)

    п -число оборотов в минуту;

    ω-угловая скорость вращения в радианах

    g-ускорение силы тяжести в м/сек 2 , если m=G/g, тогда центробежная сила С, действующая на вращающееся тело с массой m и весом G, равна C= G(2π n r/60) 2 /rg Или C ≈ G n 2 r/900 (3)

    Уравнение (2,3) показывает, что увеличение центробежной силы легче достигается увеличением числа оборотов, чем увеличением диаметра барабана. Барабаны небольшого диаметра, но с большим числом оборотов могут развить большую центробежную силу, чем барабаны большого диаметра, но при небольшом числе оборотов.

    Таким образом, центробежная сила, действующая на частицу, может быть больше силы тяжести во столько раз, во сколько ускорение центробежной силы больше ускорения свободного падения. Отношение этих ускорений называют фактором разделения и обозначают Кр:

    W 2 / r – ускорение центробежной силы.



    Приняв G=1н, получим: Кр=n 2 r /900

    Например, для центрифуги с ротором диаметром 1000 мм (r=0,5 м) вращающимся со скоростью n=1200 об/мин, фактор разделения составит 800. Разделяющее действие центрифуги растет пропорционально величине Кр.

    Значение К для циклонов имеет порядок сотен. А для центрифуг – около 3000, таким образом, движущая сила процесса осаждения в циклонах и центрифугах на 2-3 порядка больше, чем в отстойниках. Благодаря этому производительность циклонов и центрифуг выше производительности отстойников, и в них можно эффективно отделять мелкие частицы: в центрифугах размером порядка 1мкм. В циклонах – порядка 10 мкм.

    Из сравнения уравнений видно, что фактор разделения К р численно равен центробежной силе, развива­ющейся при вращении тела весом 1 кг.

    Характеристика процессов центрифугирования . Как было указано выше, центрифугирование можно проводить по принципу отстаивания (в сплошных барабанах) или по принципу фильтрации (в дырчатых бара­банах). По своей физической сущности оба процесса отличаются друг от друга. Кроме того, имеются отдельные разновидности каждого из этих процессов, которые определяются содержанием твердой фазы и степенью ее дисперсности, а также физическими свойствами суспензии.

    Центрифугирование в отстойных барабанах производят как для очистки жидкостей от загрязнений, содержащихся в небольших количествах (осветление жидкостей), так и для разделения суспензий, содержащих значительное количество твердой фазы (отстойное центрифугирование).

    Центрифугирование в отстойных барабанах в общем случае складывается из двух физических процессов: осаждения твердой фазы (процесс проходит по законам гидродинамики) и уплотнения осадка; к последнему процессу применимы основные закономерности механики грунтов (дисперсных сред).

    До некоторого предела концентрации твердой фазы (равного ориентировочно 3-4% по объему) ее осаждение в отстойном барабане протекает без образования поверхности раздела между твердым веществом и жидкостью. При повышении концентрации такая поверхность образуется вследствие укрупнения и осаждения находящихся в жидкости твердых частиц.


    Процесс центрифугирования в отстойных барабанах принципиально отличается от процесса разделения в отстойниках. В последних скорость осаждения практически можно считать постоянной, так как процесс происходит в поле тяжести, ускорение которого не зависит от координат падающей частицы.

    Ускорение же поля центробежных сил является величиной переменной и зависит при постоянной угловой скорости от радиуса вращения rчастицы. Кроме того, силовые линии центробежного поля не параллельны друг другу и, следовательно, направление действия центробежных сил будет неодинаково для разных частиц (не лежащих на одном радиусе вращения).

    Поэтому закономерности процессов отстаивания нельзя распространять на процесс центрифугирования в отстойных барабанах.

    Разделяющая способность отстойных центрифуг характеризуется индексом производительности (сигма) Σ, который является произведением площади цилиндрической поверхности осаждения F в роторе на фактор разделения Кр.

    Σ=F Кр (1), Кр= W2/rg ≈n2 r/900 , откуда Σ /F=Кр (2)

    Учитывая, что фактор разделения выражает отношение скоростей отстаивания частиц в отстойной центрифуге и отстойнике, в соответствии с равенством (2) величину Σ следует считать равной площади отстойника, эквивалентного по производительности для данной суспензии рассматриваемой центрифуге. Индекс производительности отражает влияние всех конструктивных особенностей осадительной центрифуги, определяющих ее разделительную способность.

    При определении производительности отстойных центрифуг периодического действия необходимо учитывать затраты времени на пуск, торможение и разгрузку центрифуги Определение производительности фильтрующей центрифуги так же сложно, как и определение производительности любого фильтра.

    Еще более сложным является процесс центрифугирования в фильтрующих барабанах . Процесс протекает в три стадии:

    образование осадка, уплотнение осадка и, наконец, удаление из пор осадка жидкости, удерживаемой капиллярными и молекулярными силами.

    Вследствие этого весь процесс центробежной фильтрации не может быть отождествлен с обычной фильтрацией, происходящей под действием сил тяжести. Лишь первый его период принципиально близок к обычной фильтрации и отличается от нее только величиной гидравлического напора жидкости, протекающей через слой осадка под действием центробежных сил. В этот период влага в осадке находится в свободной форме и удаляется из него наиболее интенсивно. Второй период аналогичен соответствующему периоду при отстойном центрифугировании и, наконец, третий характеризуется проникновением воздуха в уплотненный осадок, т. е. механической сушкой осадка

    Длительность указанных выше периодов зависит от физических свойств и концентрации суспензий, а также от характеристики центрифуги.

    Сложность и многообразие процессов центрифугирования затрудняет разработку теории процесса (особенно его кинетика) и точных методов расчета центрифуг.

    Производительность центрифуг . Обычно производительность центрифуг выражают объемом суспензии, поступающей в центрифугу в единицу времени (л/час), или весом осадка, получающегося после центрифугирования (кг/час).

    Потребность разделения смеси, состоящей из частиц различного размера, на более однородные фракции существует во многих областях. Одним из наиболее эффективных, простых и бюджетных способов, позволяющих справить с поставленной задачей, является центрифугирование. Как правило, для его реализации требуются специальные аппараты, лабораторная посуда, а также вспомогательное оборудование, такое как сушильные шкафы .

    Классификация методов

    В настоящее время существуют три вида центрифугирования:

    • фильтрование;
    • отстаивание;
    • осветление.

    Фильтрование проводится в центрифугах с дырчатыми барабанами, внутрення поверхность которых покрыта тканью. В процессе вращения рабочей полости, происходит осаждение частиц твердой фазы на материю: постепенное уплотнение слоя и его последующее удаление.

    Центробежное отстаивание в некоторой степени отличается от фильтрования. Для его реализации используются более сложные конструкции. Неоднородная смесь постепенно поступает в рабочую полость, совершающую вращательные движения вокруг своей оси. В результате твердая фаза осаждается на стенки барабана, а жидкая - вытесняется за его пределы регулярно поступающей из нижнего отверстия неоднородной смесью.

    Центробежное осветление позволяет разделять более тонкие коллоидные растворы. В процессе вращения барабана происходит образование градиента плотности. Причем более легкие жидкости скапливаются в центре, а более тяжелые - на периферии.

    Применение центрифугирования

    Благодаря простоте реализации процесса, данный способ разделения растворов нашел применение в следующих областях:

    • промышленности;
    • медицине;
    • науке.

    Метод на протяжении многих лет активно используется в процессе добычи нефти для повышения ее качества путем удаления воды из состава. В медицине с его помощью проводят такие операции, как:

    • выделение тромбоцитарной массы;
    • получение очищенных образцов для плазмафареза;
    • синтез эритроцитарной массы.

    Кроме того, центрифугирование в совокупности с современным оборудованием, таким как шкафы сушильные , позволяет подготовить кровь для переливания.

    Загрузка...